3.245 \(\int \frac{1}{\sqrt{2-3 x^2} \sqrt{-1+x^2}} \, dx\)

Optimal. Leaf size=32 \[ \frac{\sqrt{1-x^2} \text{EllipticF}\left (\sin ^{-1}(x),\frac{3}{2}\right )}{\sqrt{2} \sqrt{x^2-1}} \]

[Out]

(Sqrt[1 - x^2]*EllipticF[ArcSin[x], 3/2])/(Sqrt[2]*Sqrt[-1 + x^2])

________________________________________________________________________________________

Rubi [A]  time = 0.0147927, antiderivative size = 32, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 21, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.095, Rules used = {421, 419} \[ \frac{\sqrt{1-x^2} F\left (\sin ^{-1}(x)|\frac{3}{2}\right )}{\sqrt{2} \sqrt{x^2-1}} \]

Antiderivative was successfully verified.

[In]

Int[1/(Sqrt[2 - 3*x^2]*Sqrt[-1 + x^2]),x]

[Out]

(Sqrt[1 - x^2]*EllipticF[ArcSin[x], 3/2])/(Sqrt[2]*Sqrt[-1 + x^2])

Rule 421

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Dist[Sqrt[1 + (d*x^2)/c]/Sqrt[c + d*
x^2], Int[1/(Sqrt[a + b*x^2]*Sqrt[1 + (d*x^2)/c]), x], x] /; FreeQ[{a, b, c, d}, x] &&  !GtQ[c, 0]

Rule 419

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(1*EllipticF[ArcSin[Rt[-(d/c),
2]*x], (b*c)/(a*d)])/(Sqrt[a]*Sqrt[c]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] &
& GtQ[a, 0] &&  !(NegQ[b/a] && SimplerSqrtQ[-(b/a), -(d/c)])

Rubi steps

\begin{align*} \int \frac{1}{\sqrt{2-3 x^2} \sqrt{-1+x^2}} \, dx &=\frac{\sqrt{1-x^2} \int \frac{1}{\sqrt{2-3 x^2} \sqrt{1-x^2}} \, dx}{\sqrt{-1+x^2}}\\ &=\frac{\sqrt{1-x^2} F\left (\sin ^{-1}(x)|\frac{3}{2}\right )}{\sqrt{2} \sqrt{-1+x^2}}\\ \end{align*}

Mathematica [A]  time = 0.0232915, size = 40, normalized size = 1.25 \[ \frac{\sqrt{1-x^2} \text{EllipticF}\left (\sin ^{-1}\left (\sqrt{\frac{3}{2}} x\right ),\frac{2}{3}\right )}{\sqrt{3} \sqrt{x^2-1}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(Sqrt[2 - 3*x^2]*Sqrt[-1 + x^2]),x]

[Out]

(Sqrt[1 - x^2]*EllipticF[ArcSin[Sqrt[3/2]*x], 2/3])/(Sqrt[3]*Sqrt[-1 + x^2])

________________________________________________________________________________________

Maple [A]  time = 0.022, size = 29, normalized size = 0.9 \begin{align*}{\frac{\sqrt{2}}{2}{\it EllipticF} \left ( x,{\frac{\sqrt{6}}{2}} \right ) \sqrt{-{x}^{2}+1}{\frac{1}{\sqrt{{x}^{2}-1}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(-3*x^2+2)^(1/2)/(x^2-1)^(1/2),x)

[Out]

1/2*EllipticF(x,1/2*6^(1/2))*(-x^2+1)^(1/2)*2^(1/2)/(x^2-1)^(1/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{x^{2} - 1} \sqrt{-3 \, x^{2} + 2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(-3*x^2+2)^(1/2)/(x^2-1)^(1/2),x, algorithm="maxima")

[Out]

integrate(1/(sqrt(x^2 - 1)*sqrt(-3*x^2 + 2)), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (-\frac{\sqrt{x^{2} - 1} \sqrt{-3 \, x^{2} + 2}}{3 \, x^{4} - 5 \, x^{2} + 2}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(-3*x^2+2)^(1/2)/(x^2-1)^(1/2),x, algorithm="fricas")

[Out]

integral(-sqrt(x^2 - 1)*sqrt(-3*x^2 + 2)/(3*x^4 - 5*x^2 + 2), x)

________________________________________________________________________________________

Sympy [C]  time = 4.80676, size = 37, normalized size = 1.16 \begin{align*} \begin{cases} - \frac{\sqrt{3} i F\left (\operatorname{asin}{\left (\frac{\sqrt{6} x}{2} \right )}\middle | \frac{2}{3}\right )}{3} & \text{for}\: x > - \frac{\sqrt{6}}{3} \wedge x < \frac{\sqrt{6}}{3} \end{cases} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(-3*x**2+2)**(1/2)/(x**2-1)**(1/2),x)

[Out]

Piecewise((-sqrt(3)*I*elliptic_f(asin(sqrt(6)*x/2), 2/3)/3, (x > -sqrt(6)/3) & (x < sqrt(6)/3)))

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{x^{2} - 1} \sqrt{-3 \, x^{2} + 2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(-3*x^2+2)^(1/2)/(x^2-1)^(1/2),x, algorithm="giac")

[Out]

integrate(1/(sqrt(x^2 - 1)*sqrt(-3*x^2 + 2)), x)